
Asset Development
401

Arcus
makes users more successful, productive and secure

in any cloud, using any technology.

It is the platform for where & how to get things done!

Topics
▪Asset Library
▪Creating Software Assets:
▪ Using Asset Properties
▪ Environment Variables
▪ Best Practices & Tips

▪Managing Assets
▪Creating ElasticTest™ Assets
▪Rest API
▪Support & Troubleshooting

Asset Library

Asset Library
Everything is an Asset!

Browse to find existing Software, Tests, Systems, Scenarios, and Deployments

Browse Asset Types

Types of Assets
Resource Assets
Elements of a Cloud that are registered to be available for
use by the CONS3RT agent. The Cloud Administrator
controls which resources they want to allow access to.
Users do not interface or manage.

Clouds
Cloudspaces
Networks
Operating System Templates

Component Assets
Component assets are the building blocks that can be
mixed and matched as part of Composite Assets.
Components can be imported by a user with appropriate
permissions via the web application.

Software Applications
Container Images
Test Cases (Nessus, Fortify, etc.)

Composite Assets
Users assemble Component Assets by combining
available Resources and Components to define how
systems and scenarios will be built, configured and
deployed. Users often refer to these as “designs,” “recipes,”
“blueprints,” or “manifests.”
Assembly is done via the web application.

App Bundles
Systems
Scenarios
Deployments
Compositions

Asset Library
Viewable Assets = Selected Project + Asset Visibility

Asset Sub-Type

VisibilityFilters
Projects

Add Assets

Tags
Search

Creating Software Assets

Component Assets
Asset Type Sub Types Examples

Software Assets • Application Software
• Container images

• STIG, Security Hardening
• Java, MySQL, JBOSS
• Puppet, Chef, Ruby, Python
• Network Configuration
• Forge.mil Source Code
• Github Source Code
• Nightly Builds
• Test Data
• Production Databases

Test Assets • Tenable Nessus
• HP Fortify
• Sonarlint
• Web Exploit Suite
• SmartBear SoapUI
• CA LISA
• Script

• Security Vulnerability
• Source Code Quality & Security
• Web Service Validation
• Web Application Functional & Performance Tests

Sample Assets on Github: https://github.com/cons3rt

https://github.com/cons3rt

Developing Software Assets
▪ Assets do the heavy lifting of application install, configuration, data loading,

utilities, and more

▪ Assets can be developed in ANY language:
▪ Scripting (Bash, Powershell, Python, etc.)
▪ Higher Level Languages (Java, Ruby, etc.)
▪ Configuration Management Languages (Ansible, Puppet, Salt, Chef, etc.)

▪ Assets must be wrapped in a language installed on the System by the time the
Asset is run:
▪ Bash (Linux) and Powershell (Windows) are guaranteed on all Systems
▪ However, Asset 1 could install Puppet and then Assets 2-10 could be Puppet-based

▪ Assets should be managed like any other source code

▪ Like any code, Assets can be simple & fixed or granular & flexible based on the
style and need of the Team

▪ Assets make use of properties to merge the System information into the
execution

Adding Assets
▪ There are two ways to add Assets to the

Library…

▪ Assets can be built using the Asset Builder
Wizard:
▪ This walks through the process of collecting the

data and components needed.
▪ It is good for those getting started with Asset

development.

▪ Assets can be uploaded as a single Asset
Zip file:
▪ The zip file contains all the scripts, media,

metadata, and documentation.
▪ The zip can be assembled from source offline and

uploaded via GUI or ReST.

Select method

Asset Builder

Asset Builder:
▪ Select an Application Software Asset

▪ An Application Software Asset
installs on the System with a single
primary install script.

Select type

Asset Builder: Basic Info
▪ Enter a Name for the Asset

▪ Enter a Description (optional)

▪ Enter the Version

▪ Enter the Vendor

Asset Builder: Define Resources
▪ Select Platform (required)

▪ If defined, an Asset will not be installed on an
incompatible platform

▪ Select the Architecture

▪ Select Bits

▪ Define the minimum suggested CPUs

▪ Define the minimum suggested Memory

▪ Define the minimum suggested Storage

Note: CPU, RAM, and Storage values are provided
to the user as guidance but not enforced

Asset Builder: Script & Media (App)
▪ Drag and drop or browse the file System to

upload the primary Install script

▪ Identify the Media to to added to the Asset.
The media can be…
▪ Fetched from a remote (http) source
▪ Uploaded from the local file System

▪ Any provided content will entirely replace the
existing content of the Asset’s media
directory.

▪ All files are scanned for viruses and malware.

▪ A notification is sent when the Asset is
available for use.

▪ Users are responsible for securing any data
included in Assets. If sensitive data needs to
be hashed or encrypted, that must be
performed as part of the Asset preparation.

Primary install script

Select media source

Asset Builder: Script & Media (Source)
▪ Drag and drop or browse the file System to upload the

the four required scripts:
▪ Install script
▪ Checkout script
▪ Build script
▪ Deploy script

▪ Identify the Media to to added to the Asset. The media
can be…
▪ Fetched from a remote (http) source
▪ Uploaded from the local file System

▪ Any provided content will entirely replace the existing
content of the Asset's media directory.

▪ All files are scanned for viruses and malware.

▪ A notification is sent when the Asset is available for use.

▪ Users are responsible for securing any data included in
Assets. If sensitive data needs to be hashed or
encrypted, that must be performed as part of the Asset
preparation.

Select media source

Asset Zip

Asset Zip: Zip File
▪ Drag and drop or browse the file System to

upload the prepared zip file

▪ Any provided content will entirely replace the
existing content of the Asset’s media directory.

▪ All files are scanned for viruses and malware.

▪ A notification is sent when the Asset is available
for use.

▪ Users are responsible for securing any data
included in Assets. If sensitive data needs to be
hashed or encrypted, that must be performed as
part of the Asset preparation.

Asset Zip: Software Assets Structure
1. Create the Asset directory structure

▪ Use a sample asset template from Github

2. Add install media to the media directory

3. Add install scripts to the scripts

4. Update the asset.properties file
▪ Set the installScript property to the name of your primary install script
▪ Set the name, description, and other information

5. Add README and LICENSE files to the root directory

6. Zip the directory

7. Click the + button to import

8. The Asset upload task is backgrounded and scanned for virus

9. An email is sent when the upload is complete, and the Asset is available

https://github.com/cons3rt

Asset Zip: Application Software Assets
▪Asset Directory ($ASSET_DIR or %ASSET_DIR%)

▪ asset.properties
▪ README (optional)
▪ LICENSE (optional)
▪ media/

▪ install media files (optional)
▪ scripts/

▪ install.sh (Linux)
▪ install.bat (Windows)
▪ install.ps1 (Windows)

Any Scripting Language!

Asset Zip: Sample asset.properties
#######################
These are mandatory
#######################

Indicates the asset type
Valid Values: software, testasset
Type=software

Indicates the Software Asset Type
Valid Values: Application, Source_Code
softwareAssetType=Application

Name and Description
name=Sample Software Application Asset Name
description=Sample Software Asset Description

Primary install script to execute
Must exist in the scripts directory
installScript=install.sh

Specify a license file
Must exist at the location specified
licenseFile=LICENSE.html

Specify a documentation file
Must exist at the location specified
documentationFile=HELP.html

#####################
These are optional
#####################
Instance limit
Leave blank for unlimited instances
Expressed as a number
instanceLimit=10
Application vendor information
Expressed as Free Text
vendor=SoftwareVendor
softwareVersion=0.99
applicationVendorMessage=Please Redistribute Freely
Required CPU count for the application
Expressed as a number
applicationRequiredCpuCount=1
CPU Speed
Expressed as a number in MHz
applicationRequiredCpuSpeed=2100
Ram and disk space required
Expressed as a number in MBytes required
Ram=2048 required
Disk=2048
For application software asset
Expressed as Free Text
applicationType=Java EE applicationProductFamily=JBoss
Asset Developer POC Information
pocName=John Doe
pocOrganization=Organization, Inc.
pocEmail=john@doe.net
pocPhone=123-456-7890

Other Asset Resources

Environment Variables
▪Available to install scripts at runtime

▪ Grab media files from the asset
▪ Launching additional code (e.g., Puppet manifests)
▪ Conditional logic based on Role name
▪ Grabbing custom properties or Deployment properties

Variable Description

ASSET_DIR Path to the parent directory of your Asset on the System

CONS3RT_ROLE_NAME Set to the role name given in the Scenario

DEPLOYMENT_HOME Path to the Deployment properties files

Deployment Properties
▪ Deployment properties consist of

▪ Standard System properties
▪ User defined properties

▪ The standard system properties includes data about
▪ IP addresses, hostnames, user, technologies, etc.

▪ The role name (defined in Scenario) maps properties to a System

▪ To access, Use the DEPLOYMENT_HOME environment variable

▪ OS-friendly source-able files (replace dots with underscores):
▪ Linux: deployment-properties.sh
▪ Windows Powershell: deployment-properties.ps1

OS Language How to Access in your Scripts

Any Java, Groovy, any $DEPLOYMENT_HOME/deployment.properties

Linux
Shell Scripts (e.g., bash),
Perl, Python, Ruby, etc.

source $DEPLOYMENT_HOME/deployment-properties.sh

Windows Powershell $env:DEPLOYMENT_HOME\deployment-properties.ps1

Sample deployment.properties
▪ # ==== Begin deployment.properties ====

▪ #Properties file for Deployment 31372

▪ cons3rt.deployment.id=31372

▪ cons3rt.deployment.name=My Awesome Deployment

▪ cons3rt.deploymentRunId=21149

▪ cons3rt.deploymentRunName=My Awesome Deployment Run

▪ cons3rt.fap.deployment.machine.RoleName.0.externalIp=10.3.1.11

▪ cons3rt.fap.deployment.machine.RoleName.0.internalIp=10.3.1.11

▪ cons3rt.fap.deployment.machine.RoleName.0.isCons3rtNetwork=true

▪ cons3rt.fap.deployment.machine.RoleName.0.mac=00\:50\:56\:01\:07\:35

▪ cons3rt.fap.deployment.machine.RoleName.0.networkName=003_vdcA_routeNet_01

▪ cons3rt.fap.deployment.machine.hostname.RoleName=dr21149v0

▪ cons3rt.fap.deployment.machine.ipAddress.RoleName=10.3.1.11

▪ cons3rt.fap.deployment.machine.isMaster.RoleName=true

▪ cons3rt.fap.deployment.machine.isProvisionable.RoleName=true

▪ cons3rt.fap.deployment.machine.isVirtual.RoleName=true

▪ cons3rt.fap.deployment.machine.osFamily.RoleName=WINDOWS

▪ cons3rt.fap.deployment.machine.template.RoleName=template-windows2012-x64

▪ cons3rt.fap.deployment.numMachines=1

▪ cons3rt.user=michael.loebl.eca

▪ customProperty1=propertyValue1

▪ customProperty2=propertyValue2

▪ # ==== End deployment.properties ====

Logging!!!
▪ Log as much as you can!!
▪ CONS3RT Agent log (cleaned up if the run succeeds):

▪ Linux: /opt/cons3rt-agent/logs
▪ Windows: C:\cons3rt-agent\logs

▪ Review logs in the UI!

▪ Create your own log files

DO IT!

1) Click the “Log” Icon

2) View Logs!

3) Type to Search4) Select Log Level to Auto-Filter

Best Practices & Tips
▪ Logging is your friend!!!

▪ Paint by Numbers approach:
▪ Start by creating “master” shells (empty) of the Deployments, Scenarios, Systems, and Assets you think you will need
▪ Launch a parallel component and work the install/config/test/security
▪ Then update the “master” component as you identify working elements

▪ Use Exit Codes:
▪ CONS3RT looks for the exit code of your primary Install Script
▪ 0 = CONS3RT assumes success, proceeds to next Asset
▪ 255 = CONS3RT assumes failure but proceeds to next Asset
▪ Non-Zero = CONS3RT assumes failure, halts, and notifies user

▪ Split the installer media and the install script into two Assets:
▪ Allows you to reuse community Assets for installer media (e.g. SQL Server)
▪ Focus changes on lightweight script assets

▪ “Infrastructure as Code”= manage assets like source code:
▪ Check into source code repository
▪ Promote, merge, rollback, etc.
▪ When appropriate, tie Asset scripts to source code repo
▪ Frequently “compile” (aka deploy)

Managing Assets

Asset Help
▪ Includes…

▪ How to use Asset
▪ Properties used
▪ List of any prerequisites

(Operating System, Asset
dependencies)

▪ Exit Codes

▪ Uses Markdown (.md)
formatting or plain text

Asset License Info
▪ Add applicable software

license/user agreement or link to
a public license

▪ This is NOT for license keys

▪ Uses Markdown (.md) formatting
or plain text

1) C
lick “User A

greement”

2) C
lick “Edit”

Asset Ownership
▪ Assets belong to:

▪ Owner – the person who created the Asset
▪ Project – the owner’s Project when the

Asset was created

▪ Site Admins and Project Managers can
change the Asset owner

▪ Only Site Admins can move Asset
ownership to another Project

Owning Project

Visibility

Asset Owner

Asset Visibility and Sharing
▪ Set the Visibility for all your Assets

▪ Leverage for privacy, publishing, configuration management, workflow, sharing

▪ Default Visibility is “No one else”

▪ Change visibility via the edit (pencil) button

▪ Trusted Projects are set up by the Project Manager

▪ Maximize re-usability by using Community Assets in your Project!

▪ Deployments cannot be shared outside of a Project

Level Visibility

No one else (me) Asset is not shared, only visible to you

Project Members of the Asset owning Project

Partner Projects Select from a list of “Trusted Projects”

Everyone Anyone in the Community can view and use the Asset

 Click “Edit”

Asset States
▪ Designed to fit your Team’s processes

▪ Leverage for configuration management, workflow

▪ Using a shared Asset that is “In Development” will generate a warning that it may change

▪ Set the Asset State by clicking the gear icon

State Behavior

In Development
(Initial State)

Owner can edit the Install script and update the Asset components.
Other users can expect change.

Published The Asset cannot be updated. Other users can rely on stability.

Certified Same as Published plus support standing behind the Asset.

Deprecated Greyed out in Asset Library (select “Include Inactive” to see)
Cannot be used in new Systems; existing Runs will launch
CANNOT change back to “Published”

Retired Greyed out in Asset Library (select “Include Inactive” to see)
Deployment Runs cannot launch with a Retired Asset
CANNOT change back to “Published”

 Click “Edit”

Tags
▪ Choose up to three Tags from list

▪ The Tags list is managed by the Site Admin

▪ Disruptive Tags generate notifications to
Site Admins when Asset is used

Instance Limits
▪ Manages number of simultaneous times an Asset is deployed

▪ Use to manage software license compliance

▪ To set the Instance Limit…

1) Click “Edit”

3) Confirm or Cancel

2) Set “Unlimited” or a Fixed Number

Cloud Impact Level
▪ Set the FedRamp Data Impact

Level for an Asset

▪ Assets cannot be deployed
into a Cloudspace that does
not support that data Impact
Level or higher

▪ Cloudspace Administrators set
the data Impact Level

▪ To set the Impact Level…

2) Set “Impact Level”

3) Click “Save”

1) Click “Edit”

ITAR Restriction
▪ Set at the Project level

▪ Cannot share ITAR Assets at
the Community level

▪ ITAR Restrictions carry through
to Composite Assets

▪ Once something is ITAR
restricted, it cannot be undone

▪ To set the ITAR Restriction, see
the image to the right…

2) Turn on ITAR

1) Select “Manage”

Creating ElasticTest™
Assets

ElasticTest™
ElasticTest™ Benefits

▪ Built on-demand

▪ Tool is local so it can reach its target…

▪ …but can also do WAN testing

▪ Less disruptive traffic

▪ Secure control over credentials used in evaluation

▪ Isolated activities

▪ Elastic resources

▪ Efficient use of license investment

▪ No management of system necessary

▪ No expertise required to execute but…

▪ Power users can still customize

Cloudspace Boundary Cloudspace Boundary

System A

System B

System C

ACAS

System A

System B

System C

Exploit Test

Arcus Cloudspace Boundary

Arcus

System A

System B

System C

Performance
Test

ElasticTest™ Enabled Tools
▪ Tenable Nessus – vulnerability assessment
▪MicroFocus Fortify* – source code analysis
▪ Sonarlint – source code analysis
▪ SmartBear SoapUI – web service & application
▪ CA LISA* – web service & application
▪Worksoft Certify* – web service, full application
▪Web Exploit Suite – suite of penetration tools
▪ Script

▪ bash
▪ Powershell

▪ ElasticTest SDK used for developing new tools
*licensed separately

Test Assets
▪Test Cases/Suites/Scripts
▪Test Assets consist of:
▪ Files or files used by the Test Tool to run the test
▪ Configuration Data such as:

▪ Static properties and data
▪ Custom user properties
▪ Dynamic properties

▪ Asset definition (used for CONS3RT management)
▪ Documentation

▪Tests should be written to handle data defined in the Asset
▪Different test tool types require different custom properties

Using Test Assets

1) Click Tests

2) Add to Deployment Builder

Running & Reporting
▪ User initiated via the GUI or REST API
▪ Immediate run, future run, or via recurring schedule
▪ Tests can be run using community tools or as an on-demand (elastic) tool.

(i.e. shared vs. dedicated resources)
▪ Provision System under test and then execute a test
▪ Re-execute Tests multiple times

▪ Canned reports (formats vary – pdf, csv, txt, xls, etc.)
▪ Log files (usually in txt format)
▪ Customize report interface (i.e. a database, log file, some externally

accessible API)

Rest API

ReST API
▪ReST is a stateless interface that allows users to interact with a
system via HTTP calls:
▪ Each ReST call contains all the necessary information to complete a

desired task (Stateless – interactive session is not required)
▪ Specific urls detail the target of an interaction, such as

▪ /rest/api/systems
▪ /rest/api/scenarios/{id}/launch

▪ http verbs, such as GET/PUT/POST/DELETE
dictate the actions to be taken on a specified target

▪ReST allows general actions to
be automated saving time an effort of continual tasks

Automate the Automation

ReST Use Cases
▪ Query your active Deployment Runs and put results in a dashboard
▪ Launch a Test every time code is checked-in to your repository
▪ Setup new Project spaces upon user registration
▪ Update System/Scenario/Deployment recipes when an Asset is

updated
▪ Update Asset state after a successful Security Scan
▪ Remotely launch a Nessus Scan and return results to content share of

your choice
▪ Run smoke tests every hour on the hour

ReST Driven Workflow
Daily CI Flow

1) Developers check in code to DI2E Stash during the
day

2) Nightly Jenkins job pulls day’s code from DI2E Stash

3) Jenkins job builds artifact and pushes to Nexus
repository

4) Jenkins launches twenty (20) Deployment Runs
(DR) in arcus using ReST API

5) Each DR pulls and installs the latest artifact from
Nexus

6) Each DR includes an ElasticTest case (functional Test,
Security Scan)

7) Upon completion of the DR, the Systems are released,
and the ElasticTest results are posted in DI2E:
•Issues in JIRA as tickets
•Summary results in a Confluence wiki

8) Each morning the PM & team can see PASS/FAIL
results for hundreds of criteria

Arcus

DI2E

Developer Z

Developer A

Team Cloudspace

ETT-Fortify

Jenkins Nexus

DR-1

DR-n

DR-3

DR-2

Stash
(Git)

Confluence
(Wiki)

JIRA
(Ticketing)

Arcus Web App

ETT

Key

Longer running service DR Short term DR for dev/test

1

2

3

4
4

7

7

8

PM

5

6

1

Overview of the CONS3RT REST API

▪ First things first go here and read:
https://arcus-cloud.io/kb/developer/

▪ Generate an API key in your account
profile page

▪ What can I do now?
▪ 100+ Endpoints
▪ 15+ Categories

https://arcus-cloud.io/kb/developer/

What makes up a ReST call?
▪ URL: the target of the call

▪ HTTP verb: either GET, PUT, POST, DELETE

▪ Credentials:
▪ Password or certificate: provided via browser, or directly
▪ ReST API Key : provided following a support request
▪ Project : the project context (user must be a member)

▪ Body: some calls require input, which takes the form of xml or json objects

▪ Content-Type: Specifies the type of content being sent (application/xml - json)

▪ Query Parameters: input that is fed into the url itself to specify settings or options ex:
/rest/api/systems/{id}/clone?name=test

Sample Rest Call : Structure

ReST In Action (Examples)
▪Example call

curl -i –k \
--cert ”{cert from keychain}" \
-H "rest_api_key: {key goes here}" \
-H "Accept: application/xml" -H "Content-Type: application/xml" \
-H "project: Sample Project" \
-X GET https://www.cons3rt.com/rest/api/projects/$ID/ members/

▪Browser plugin
▪Bash script

https://www.milcloud.ceif.hpc.mil/rest/api/projects/$ID/

Plugins & SDKs
▪ Jenkins Plugin

▪ Arcus can be fully integrated into a Jenkins CI pipeline using the Arcus Jenkins Plugin.
▪ The Jenkins Plugin allows users to create and update Arcus software assets as part of a Jenkins build.
▪ The Jenkins Plugin can also leverage the deployment run options in the post-build actions to launch new

deployment runs that leverage the newly updated asset(s).
▪ The Jenkins plugin can be downloaded via https://github.com/jenkinsci/cons3rt-plugin or accessed

at https://plugins.jenkins.io/cons3rt
▪ After installing the plugin, you’ll get a new Post-Build entry named “Create an Arcus Asset” and a Post-Build

Action entry named “Create or Update an Arcus Asset”
▪ In order to upload your asset to a site, a site URL and ReST token must first be provided (the latter taking the

form of a Jenkins secret-text credential)

▪ Arcus offers SDKs for several languages (e.g. Python):
▪ Currently in Beta
▪ Please contact support if you are interested in leveraging these SDKs

https://github.com/jenkinsci/cons3rt-plugin
https://plugins.jenkins.io/cons3rt

Support & Troubleshooting

Support
▪ Support
▪ https://arcus.mil/support
▪ Submit a ticket through…

▪ the Support link on the home page
▪ the Help icon when signed in

▪ Help icon tickets provide more data on what the
user was working on

▪ Email
▪ support@arcus-cloud.io

▪ Knowledge Base
▪ https://arcus.mil/kb/
▪ The Knowledge Base expands on all the topics

covered in this training.

▪ Github Sample Assets
▪ https://github.com/cons3rt

https://arcus-cloud.io/support
mailto:support@arcus-cloud.io
https://arcus-cloud.io/kb/
https://github.com/cons3rt

Video Tutorials
▪ If you would like to see Arcus in action,

feel free to check out the video tutorials:
▪ On the Arcus Help Channel at

https://www.youtube.com/c/arcushelpchann
el

▪ Embedded in the articles on our Help Site

▪ If you have any suggestions for future
videos, let us know by submitting a
ticket

https://www.youtube.com/c/arcushelpchannel
https://www.youtube.com/c/arcushelpchannel
https://arcus-cloud.io/kb

Thank you!

